ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG
WINTERSEMESTER 2019/2020

Prof. Amador Martin-Pizarro Übungen: Daniel Palacín

Modelltheorie

Blatt 7 Abgabe: 17.12.2019, 14 Uhr

Aufgabe 1 (6 Punkte).

Sei DLO die Theorie dichter linearer Ordnungen ohne Randpunkte in der Sprache $\mathcal{L} = \{<\}$.

- a) Ist DLO total transzendent?
- b) Besitzt DLO ein Primmodell? Wenn ja, beschreibe es.
- c) Gegeben ein abzählbares Modell \mathcal{M} von DLO, wie viele Typen gibt es in $S_1^{\mathcal{M}}(M)$?

Aufgabe 2 (6 Punkte).

In der Sprache $\mathcal{L} = \{E_n\}_{n \in \mathbb{N}}$ sei T die Theorie unendlich viele Äquivalenzrelationen wie in der Aufgabe 2 im Blatt 4.

- a) Ist T total transzendent?
- b) Besitzt T ein Primmodell?
- c) Gegeben ein abzälbares Modell \mathcal{M} von T, wieviele Typen gibt es in $S_1^{\mathcal{M}}(M)$?

Aufgabe 3 (3 Punkte).

Seien $\mathcal{A} \preceq \mathcal{B}$ zwei Strukturen in der Sprache \mathcal{L} und p(x) ein 1-Typ in $S_1^{\mathcal{A}}(A)$, welcher in \mathcal{A} vermieden wird. Betrachte eine Typenerweiterung $p(x) \subset q(x)$, mit q(x) in $S_1^{\mathcal{B}}(B)$ derart, dass für jede \mathcal{L}_B -Formel $\varphi[x, \bar{b}]$ in q(x) es ein Element a aus A gibt, sodass $\mathcal{B} \models \varphi[a, \bar{b}]$.

Ist q(x) isoliert?

Aufgabe 4 (5 Punkte).

In der Sprache $\mathcal{L} = \{<, P\}$ sei T die Theorie dichter linearer Ordnungen ohne Randpunkte mit einer dichten kodichten Teilmenge, welche die Interpretation vom einstelligen Prädikat P ist.

- a) Zeige, dass T vollständig mit Quantorenelimination ist.
- b) Wie viele abzählbare Modelle besitzt T, bis auf Isomorphie?
- c) Gegeben eine endliche Teilmenge Menge A eines Modells \mathcal{M} von T, wie viele Typen gibt es in $S_1^{\mathcal{M}}(A)$?

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH IM KELLER DES MATHEMATISCHEN INSTITUTS.